Weltraummüll

Quellen & Verringerung

 

 

Entstehung von neuem Weltraummüll

 

Neben nicht mehr gebrauchten Satelliten gibt es eine Vielzahl an Ereignissen und Mechanismen, die zur Entstehung von Weltraummüll führen.

Weltraummüll - Delta-II_Stage2_XSS-10

Missionsbedingte Objekte

 

Im Rahmen von Weltraummissionen freigesetzte Objekte (engl. mission-related objects, MRO), wie zum Beispiel Sprengbolzen und Abdeckungen.

Ebenfalls ganze Raketenoberstufen und Doppelstartvorrichtungen, die mit den Satelliten in die Umlaufbahnen gelangen und dort verbleiben.

Explosionen

von Satelliten oder Oberstufen – diese werden hervorgerufen durch absichtliche Sprengungen, durch die Entzündung von Resttreibstoffen von Oberstufen und durch das Verdampfen von kryogenen Treibstoffkomponenten in Oberstufen, in denen noch Treibstoffreste zurückgeblieben sind.

Durch die Ausdehnung dieser Treibstoffe während des Verdampfens können die Oberstufen gesprengt werden. Explosionen können auch von Entladungen in Batterien der Satelliten ausgelöst werden. Es wird angenommen, dass sich seit Beginn der Raumfahrt etwa 200 Explosionen im Orbit ereignet haben.

 

Killersatelliten

Satelliten, die während des Kalten Krieges – wahrscheinlich auch noch heute – eigens zur Neutralisierung von Spionagesatelliten des Gegners eingesetzt werden. Die meisten führen selbstzerstörerisch eine beabsichtigte Kollision mit dem Ziel herbei, mitunter einhergehend mit einer Explosion. Weder ihre Zahl noch die ihrer Opfer sind öffentlich bekannt, da sowohl sie selbst als auch ihre Ziele unter strengster militärischer Geheimhaltung stehen.
die Bahnen katalogisierter Fengyun-1C-Fragmente einen Monat nach dem ASAT-Test

Höhenverteilung von Fragmenten im LEO nach Fengyun-1C und der Kollision 2009[9] Antisatellitenraketen (ASAT)
Der Einsatz dieser Waffen kann die Trümmer, die bei der Zerstörung von Satelliten entstehen (wie z. B. bei Fengyun-1C), auf sehr viele verschiedene Bahnen schleudern – auch solche, die große Höhen erreichen.

 

Kollisionen von Raumflugkörpern

Dabei geht es nicht um Schrammen bei missglückten Andockmanövern, sondern um zufällige Zusammentreffen mit hoher Relativgeschwindigkeit, im GEO meist mit 100 bis 1000 m/s, aber womöglich auch mit 1,5 km/s (Satellit gegen Hohmann-Transfer-Stufe), im LEO mit typisch 10 km/s, was beide Flugkörper zerlegt.

Beispiele sind die Abtrennung des Stabilisierungsmastes des Cerise-Satelliten (ausfahrbarer Mast) durch eine ältere Ariane-Raketenoberstufe und die spektakuläre Satellitenkollision am 10. Februar 2009, bei der über 2000 katalogisierte Trümmerteile und grob geschätzt eine halbe Million Partikel über 1 mm entstanden.

 

Fortgesetzte Kollisionen

Der NASA-Berater Donald J. Kessler prognostizierte 1978 das als Kessler-Syndrom bekannt gewordene Szenario, nach dem bei Einschlägen kleiner Fragmente und Meteoroide jeweils viele größere Fragmente entstehen würden und so das Müllproblem beschleunigt wachsen würde, selbst wenn keine weiteren Satelliten mehr gestartet würden.

 

Oberflächendegradation

Das ESA Space Debris Teleskop fand öfter helle Objekte, deren schnelles Absinken in der Hochatmosphäre auf ein sehr hohes Flächen- zu Massenverhältnis hindeutet, bis zu 30 m²/kg. Es könnte sich um Wärmeschutzfolie von Satelliten handeln.

 

West Ford Dipole

Zu Beginn der 1960er Jahre sollte eine diffuse Sphäre aus vielen Millionen feiner Drähtchen (18 mm × 0,018 mm) einen Reflektor für den Funkverkehr bilden. Die Vereinzelung bei der Freisetzung gelang nur teilweise; es bildeten sich Flocken, von denen noch eine überschaubare Zahl in über 2500 km Höhe vagabundiert.

 

Feststofftriebwerke

erzeugen während des Abbrandes mikrometergroße Aluminiumoxid-Partikel. Am Ende des Abbrandes können auch größere Schlackeobjekte austreten, deren Durchmesser mehrere Zentimeter erreichen kann.

 

Reaktorkühlmittel

aus weltraumgestützten Buk-Kernreaktoren von sowjetischen Spionagesatelliten der im Westen als RORSAT bekannten Serie. Bei 16 solcher Satelliten wurde nach Beendigung der Mission eine Abstoßung des Reaktorkerns durchgeführt, dabei wurde das Kühlmittel des primären Kühlkreislaufs NaK-78 freigesetzt (jeweils ca. 8 kg). Das NaK verteilte sich dabei in Tropfen verschiedener Größe auf den Umlaufbahnen der RORSAT-Satelliten. Durch verschiedene Bahnstörungen und die Drehung der Knotenlinie verteilt sich das NaK jedoch auch zunehmend auf anderen Bahnen.

 

Verglühen von Weltraummüll aus niedrigen Umlaufbahnen

 

Lebensdauer in verschiedenen Höhen

Die Teile in niedrigen Umlaufbahnen werden durch einen Rest an Luftwiderstand abgebremst und verglühen irgendwann in der Atmosphäre. In größeren Höhen wird die Luftreibung immer geringer, so dass größere Objekte aus einer Höhe von 800 km Jahrzehnte, aus einer Höhe von 1500 km aber einige tausend Jahre brauchen, um zu verglühen. Die feinen Drähtchen des West-Ford-Projekts sind allerdings, soweit sie unverklumpt unterwegs waren, wie berechnet mit Unterstützung des Strahlungsdrucks der Sonne innerhalb weniger Jahre aus über 3500 km Höhe zurückgekehrt.
Lebensdauerdiagramme von Raumflugkörpern auf schwach elliptischen Umlaufbahnen in verschiedenen Höhen.
Da die Höhen von 800 km und 1500 km als Umlaufbahnen bevorzugt genutzt werden, wächst die Bedrohung für die kommerzielle und wissenschaftliche Raumfahrt. Konzepte, wie dieses Problem zu lösen ist, scheitern zurzeit an den damit verbundenen Kosten.

 

Beispiele für teilweises Verglühen

Bei sehr großen Satelliten und besonders bei hitzebeständigen Bestandteilen kann es vorkommen, dass diese den Wiedereintritt teilweise überstehen und einige mitunter sehr schwere Bruchstücke die Erde erreichen. Als Beispiele können hier ROSAT mit hitzebeständigen Spiegeln aus Glaskeramik oder der 5,9 Tonnen schwere Upper Atmosphere Research Satellite gelten.

Anmerkungen

Autorenliste Wikipedia

Copyright Fotos / Grafiken v.o.n.u.v.l.n.r.: NASA , NASA 

Lizenzbestimmungen Creative Commons Attribution-ShareAlike 3.0 Unported (abgekürzt)